菱形的定义是什么
菱形的定义是有一组邻边相等的平行四边形就是棱形。菱形,前提是平行四边形,再加上一组临边儿的这样的平行四边形就是棱形了。当然想判定一个图形是菱形,除了用这个作为判定之外。对角线垂直的平行四边形也是菱形。也可以四条边相等的四边形是菱形。
延伸阅读
什么是菱形它有几条边
在同一平面内,有一组邻边相等的平行四边形是菱形,四边都相等的四边形是菱形,菱形的对角线互相垂直平分且平分每一组对角,菱形是轴对称图形,对称轴有2条,即两条对角线所在直线,菱形是中心对称图形。 菱形的中点四边形总是矩形。(对角线垂直的四边形的中点四边形均为矩形)。菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定方法。
菱形的定义是怎么区分呢
菱形菱形是四边相等的四边形,属於特殊的平行四边形,除了这些图形的性质之外,它还具有以下性质:对角线互相垂直平分;四条边都相等;对角相等,邻角互补;每条对角线平分一组对角.判定:一组邻边相等的平行四边形是菱形对角线互相垂直的平行四边形是菱形四边相等的四边形是菱形依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。菱形的中点四边形是矩形。菱形面积:对角线相乘后除二或边长乘高;菱形周界为边长的四倍:
菱形定义和性质
1、菱形的定义:菱形(rhombus)是特殊的平行四边形之一。有一组邻边相等的平行四边形称为菱形。
2、菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的对角线互相垂直平分且平分每一组对角;菱形是轴对称图形,对称轴有2条,即两条对角线所在直线;菱形是中心对称图形。
菱形的定义,性质,判定是什么
菱形定义:有一组邻边相等的平行四边形叫做菱形。
菱形性质:
菱形除了具有平行四边形的一切性质外,还有一些特殊性质:
1.菱形的四条边都相等;
2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.
3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心.
菱形判定:
1.定义法:有一组邻边相等的平行四边形是菱形.
2.对角线互相垂直的平行四边形是菱形.
3.四条边相等的四边形是菱形.