这几种显微镜都是光学显微镜,以可见光为探测手段,不同于电子显微镜、扫描隧道显微镜、原子力显微镜等。
具体地说:
相差显微镜,又称相衬显微镜。由于光线在穿过透明的样品时会产生微小的相位差,而这个相位差可以被转换为图象中的幅度或对比度的变化,这样就可以利用相位差来成像。是二十世纪三十年代弗里茨·泽尔尼克在研究衍射光栅的时候发明的。因此荣获1953年的诺贝尔物理学奖。目前被广泛应用于为透明标本如活体细胞和小的器官组织提供对比度图像。
共聚焦显微镜:是一种利用逐点照明和空间针孔调制来去除样品非焦点平面的散射光的光学成像手段,相比于传统成像技巧可以提高光学分辨率和视觉对比度。从一个点光源发射的探测光通过透镜聚焦到被观测物体上,如果物体恰在焦点上,那么反射光通过原透镜应当汇聚回到光源,这就是所谓的共聚焦,简称共焦。共焦显微镜在反射光的光路上加上了一块半反半透镜(dichroicmirror),将已经通过透镜的反射光折向其它路线,在其焦点上有一个带有针孔(Pinhole),小孔就位于焦点处,挡板后面一个光电倍增管(photomultipliertube,PMT)。可以想像,探测光焦点前后的反射光通过这一套共焦体系,必不能聚焦到小孔上,会被挡板挡住。于是光度计测量的就是焦点处的反射光强度。其意义是:通过移动透镜体系可以对一个半透明的物体进行三维扫描。这样的构想,是在1953年,美国学者马文·明斯基提出,经过了30年的提高,才利用激光为光源,提高出符合马文·明斯基理想的共聚焦显微镜。
倒置显微镜:组成和普通显微镜一样,只不过物镜与照明体系颠倒,前者在载物台之下,后者在载物台之上。方便操作和其他相关图像采集设备的安装。
光学显微镜是一种利用光学透镜产生影像放大效应的显微镜。由物体入射的光被至少两个光学体系(物镜和目镜)放大。物镜产生一个被放大实像,人眼通过影响相当于放大镜的目镜观察这个已经被放大了的实像。一般的光学显微镜有多个可以替换的物镜,这样观察者可以按需要更换放大倍数。这些物镜一般被安置在一个可以转动的物镜盘上,转动物镜盘就可以使不同的目镜方便地进入光路。物理学家发现了放大倍率与分辨率之间的规律,大众才知道光学显微镜的分辨率是有极限的,分辨率的这一极限限制了放大倍率的无限提高,1600倍成了光学显微镜放大倍率的最高极限,使得形态学的应用在许多领域受到了很大限制。
光学显微镜的分辨率受到光波长的限制,一般不超过0.3微米。假如显微镜使用紫外线作为光源或物体被放在油中的话,分辨率还可以得到提高。这一平台成为搭建其他光学显微体系的基础。