数学故事手抄报简单又漂亮?
1、首先在画面顶部偏左的位置画出我们的标题“趣味数学”,然后在标题左侧画一本书籍,别忘了给它画出表情哦。
2、然后在画面左侧底部画一个红绿灯,不过灯上面写着数字“123”,然后在底部将2×3=6这个等式中的数字画成小动物的形状,在等式上面画一个向日葵边框。
3、在画面右侧画一个大大的铅笔形状的边框,边框右下角画一个小男孩,小男孩旁边画一个气泡框,里面写“我爱数学”,然后在画面右上角画一个太阳,周围画一些数字和数学符号。
4、接下来就可以开始上色啦,将向日葵涂成黄色和橘色,铅笔涂成黑色和浅粉色,边框边缘涂成粉色,小男孩头发涂成棕色,衣服涂成红色,太阳涂成黄色和红色。
5、将标题涂成红色和黄色,小动物分别涂成黄色、橙色和粉色,红绿灯涂成深灰色,灯涂成红色、黄色和绿色,周围的小图案大家可以根据自己的喜好来上色哦。
6、最后在边框里画出格子线,整理一下,一幅好看的趣味数学手抄报就完成啦。
数学的由来和发展?
数学与其他科学分支一样,是在一定的社会条件下,通过人类的社会实践和生产活动发展起来的一种智力积累.其主要内容反映了现实世界的数量关系和空间形式,以及它们之间的关系和结构.这可以从数学的起源得到印证.
古代非洲的尼罗河、西亚的底格里斯河和幼发拉底河、中南亚的印度河和恒河以及东亚的黄河和长江,是数学的发源地.这些地区的先民由于从事农业生产的需要,从控制洪水和灌溉,测量田地的面积、计算仓库的容积、推算适合农业生产的历法以及相关的财富计算、产品交换等等长期实践活动中积累了丰富的经验,并逐渐形成了相应的技术知识和有关的数学知识. 数学,其英文是mathematics,这是一个复数名词,“数学曾经是四门学科:算术、几何、天文学和音乐,处于一种比语法、修辞和辩证法这三门学科更高的地位。”
生活中,数学无处不在!那麼,数学是怎样产生的?它起源於何时呢?这可是些不易回答的问题,因为基本数学概念的原始积累过程,发生在人类创造出文字来记录自己的思想之前。
关於数学的起源,流传着一些古老而神奇的传说。相传在非常非常遥远的古代,有一天,从黄河的波涛中忽然跳出一匹“龙马”来,马背上驮着一幅图,图上画着许多神秘的数学符号,后来,从波澜不惊的洛水里,又爬出一只“神龟”来,龟背上也驮着一卷书,书中阐述了数的排列方法。马背上的图叫做“河图”,龟背上的书叫做“洛书”,当“河图洛书”出现之后,数学也就诞生了。
数学是一门最古老的学科,它的起源可以上溯到一万多年以前。但是,公元1000年以前的资料留存下来的极少。迄今所知,只有在古代埃及和巴比伦发现了比较系统的数学文献。
远在1万5千年前人类就已经能相当逼真地描绘出人和动物的形象。这是萌发图形意识的最早证据。后来就逐渐开始了对圆形和直线形的追求,因而成为数学图形的最早的原型。在日常生活和生产实践中又逐渐产生了计数意识和计数系统,人类摸索过多种记数方法,有开始的结绳记数,用石块记数,语言点数进一步用符号,逐步发展到今天我们所用的数字。图形意识和计数意识发展到一定程度,又产生了度量意识。
这一系列的发展演变逐渐形成了今天我们所熟悉的完整的数学这一门学科,它包括算术、几何、代数、三角、微积分、统计和概率(其实它一开始是人们为了钻研赌博而来的呢)……等等各个分支,而且现在还在不断发展下去。
看,这就是数学的起源以及其发展经过!是否明白呢?
中国的数学发展史
魏、晋时期出现的玄学,不为汉儒经学束缚,思想比较活跃;它诘辩求胜,又能运用逻辑思维,分析义理,这些都有利于数学从理论上加以提高。吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注,魏末晋初刘徽撰《九章算术》注、《九章重差图》都是出现在这个时期。赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。
隋唐时期是中国封建官僚制度建立时期,随着科举制度与国子监制度的确立,数学教育有了长足的发展。656年国子监设立算学馆,设有算学博士和助教,由太史令李淳风等人编纂注释《算经十书》〔包括《周髀算经》
数学发展史简介
数学的发展史大致可以分为四个阶段:
第一时期:数学形成时期,这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。
第二时期:初等数学,即常量数学时期。这个时期的基本的、最简单的成果构成现在中学数学的主要内容。这个时期从公元5世纪开始,也许更早一些,直到17世纪,大约持续了两千年。这个时期逐渐形成了初等数学的主要分支:算数、几何、代数、三角。
第三时期:变量数学时期。变量数学产
求中国数学发展史简介
中国数学起源于上古至西汉末期,中国数学的全盛时期是隋中叶至元后期,从隋朝中叶到元代末年,由于统治者总结了历代王朝倾覆的教训,采取一系列开明政策,经济得到了迅速发展,科学技术也得到了很大提高,而作为科学技术一部分的数学,也在此时进入了它的全盛时期。接下来在元后期至清中期,中国数学的发展缓慢。就在中国数学发展缓慢的时候,西方数学已大跨步超前,于是在中国数学发展史上出现了一个中西数学发展的合流期,这一时期约为公元1840年至1911年之间。近代数学的开端主要集中在公元1911年至1949年这一时期。
欧洲数学发展史
1、欧洲数学史,中世纪数学,12、13世纪欧洲数学界的代表人物是斐波那契。16、17世纪的欧洲,漫长的中世纪已经结束,文艺。在科学史上,这一时期出现了许多重大的事件,文艺复兴时期,由于艺术家所创建的透视法,逐步形成。欧洲三次方程解法的发现是在16世纪的意大利,1545年,意大利学者卡尔丹发表了三次方程X的三次方。
2、欧洲三次方程解法的发现是在16世纪的意大利,那时,数学家常常把自己的发现秘而不宣,而是向同伴提出挑战,让他们解决同样的问题。
3、1545年,意大利学者卡尔丹发表了三次方程的求根公式,卡尔丹是第一个把负数写在二次根号内的数学家,并由此引进了虚数的概念,后来经过许多数学家的努力发展成了复数的理论。在数字计算方面,斯蒂文系统地阐述和使用了小数,接着纳皮尔创制了对 数,大大加快了计算速度。以后帕斯卡发明了加法机,莱布尼茨发明了乘法机。
数学发展史上的小故事
毕达哥拉斯,从小就很聪明,一次他背着柴禾从街上走过,一位长者见他捆柴的方法与别人不同,便说这孩子有数学奇才,将来会成为一个大学者。他闻听此言,便摔掉柴禾南渡地中海到泰勒斯门下去求学。毕达哥拉斯本来就极聪明,经泰勒一指点,许多数学难题在他的手下便迎刃而解。其中,他证明了三角形的内角和等于180度;能算出你若要用瓷砖铺地,则只有用正三角、正四角、正六角三种正多角砖才能刚好将地铺满,还证明了世界上只有五种正多面体,即正4、6、8、12、20面体。他还发现了奇数、偶数、三角数、四角数、完全数、友数,直到毕达哥拉斯数。然而他最伟大的成就是发现了后来以他的名字命名的毕达哥拉斯定理,即:直角三角形两直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积。据说,这是当时毕达哥拉斯在寺庙里见工匠们用方砖铺地,经常要计算面积,于是便发明了此法。
什么是数学发展史上的三次危机
数学发展史上的三次危机无理数的发现:
1、第一次数学危机:公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的“危机“,从而产生了第一次数学危机。
2、第二次数学危机:18世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础即无穷小的问题,提出了所谓贝克莱悖论。由此而引起了数学界甚至哲学界长达一个半世纪的争论。导致了数学史上的第二次数学危机。
3、第三次数学危机:数学史上的第三次危机,是由1897年的突然冲击而出现的,这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。
关于向量数学发展史
向量,最初被应用于物理学。很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量。大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到。“向量”一词来自力学、解析几何中的有向线段。最先使用有向线段表示向量的是英国大科学家牛顿。