初一数学知识点归纳?
初一数学主要包括以下几个方面的知识点:
1. 整数、有理数、实数
– 整数及其运算:包括整数的分类、整除性、公因数和公倍数等。
– 有理数及其运算:包括有理数的概念、分类、运算(加、减、乘、除、乘方、开方等)。
– 实数及其运算:包括实数的概念、运算(加、减、乘、除、乘方、开方等)。
2. 代数式
– 代数式的概念:包括代数式的定义、书写规范等。
– 代数式的运算:包括代数式的估值、因式分解、同底数幂的乘法等。
3. 方程与不等式
– 方程的概念:包括方程的定义、解方程的方法(如移项、合并同类项等)。
– 一元一次方程:包括一元一次方程的解法、实际应用等。
– 二元一次方程组:包括二元一次方程组的解法(如代入消元法、加减消元法等)。
– 一元一次不等式:包括一元一次不等式的解法、实际应用等。
4. 函数
– 函数的概念:包括函数的定义、函数图象等。
– 正比例函数:包括正比例函数的性质、图象、实际应用等。
– 一次函数:包括一次函数的性质、图象、实际应用等。
– 反比例函数:包括反比例函数的性质、图象、实际应用等。
5. 几何
– 几何图形:包括点、线、面、角、距离等几何基本概念。
– 直线与角:包括直线的性质、角平分线、垂线、角等概念。
– 三角形:包括三角形的性质(如三边关系、内角和等)、分类、全等三角形等。
– 四边形:包括四边形的性质(如平行四边形、矩形、菱形、正方形等)、分类、全等四边形等。
6. 数据分析
– 数据收集与整理:包括数据的收集、整理、描述(如平均数、中位数、众数、极差、方差等)。
– 数据分析:包括从数据中分析规律、趋势等。
如何总结七年级数学
1、面对所有的学生,面对新的教材新的教学要求,激起我的挑战欲望,于是我每天花很长时间认真阅读、挖掘、活用教材,研究教材的重点、难点、关键,研读新课标,明白这节课的新要求,思考如何将新理念融入课堂教学中。认真书写教案,利用网络资源,参考别人的教学教法教学设计。
2、新课标的数学课通常采用“问题情境建立模型一解释、应用与拓展”的模式展开,所有新知识的学习都以相关问题情境的研究作为开始,它们使学生了解与学习这些知识的有效切入点。所以在课堂上我想方设法创设能吸弓|学生注意的情境。
七年级下册数学知识点总结
1、第一章整式的运算。整式包括单项式和多项式,由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。几个单项式的和叫做多项式。
2、第二章平行线与相交线。如果两个角的和为直角,那么这两个角互为余角;如果两个角的和为平角,那么这两个角互为补角。
3、第三章生活中的数据。对任意一个正数可能写成a乘以10n的形式,其中a大于等于1小于10,n是整数,这种记数的方法称为科学记数法。
4、第四章概率。随机事件发生与不发生的可能性不总是各占一半,现实生活中存在着大量的不确定事件,而概率正是研究不确定事件的一门学科。
5、第五章三角形。关于三角形的概念及其按角的分类:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
6、第六章生活中的轴对称。如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。
七年级下册数学所有概念总结
- 人教版的(是我寒假数学作业,明天就要报名了,求好心人救急)
- 七年级下册数学知识点(性质.定理.概念) 第一章 整式的运算一. 整式※1. 单项式①由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.③一个单项式中,所有字母的指数和叫做这个单项式的次数.※2.多项式①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.※3.整式单项式和多项式统称为整式.二. 整式的加减¤1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三. 同底数幂的乘法※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);⑤公式还可以逆用: (m、n均为正整数)四.幂的乘方与积的乘方※1. 幂的乘方法则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.※2. .※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3※4.底数有时形式不同,但可以化成相同。※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数)。※7.幂的乘方与积乘方法则均可逆向运用。五. 同底数幂的除法※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且mn).※2. 在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a0时,a-p的值一定是正的; 当a0时,a-p的值可能是正也可能是负的,如 , ④运算要注意运算顺序. 六. 整式的乘法※1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相……余下全文
七年级下册数学所有概念总结
- 人教版的(是我寒假数学作业,明天就要报名了,求好心人救急)
- 七年级下册数学知识点(性质.定理.概念) 第一章 整式的运算一. 整式※1. 单项式①由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.③一个单项式中,所有字母的指数和叫做这个单项式的次数.※2.多项式①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.※3.整式单项式和多项式统称为整式.二. 整式的加减¤1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三. 同底数幂的乘法※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);⑤公式还可以逆用: (m、n均为正整数)四.幂的乘方与积的乘方※1. 幂的乘方法则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.※2. .※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3※4.底数有时形式不同,但可以化成相同。※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数)。※7.幂的乘方与积乘方法则均可逆向运用。五. 同底数幂的除法※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且mn).※2. 在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a0时,a-p的值一定是正的; 当a0时,a-p的值可能是正也可能是负的,如 , ④运算要注意运算顺序. 六. 整式的乘法※1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相……余下全文